PUBLICATIONS
Peer-reviewed publications surrounding NanoJacket Technology
-
Ceramide-tamoxifen regimen targets bioenergetic elements in acute myelogenous leukemia. Morad SA, Ryan TE, Neufer PD, Zeczycki TN, Davis TS, MacDougall MR, Fox TE, Tan SF, Feith DJ, Loughran TP Jr, Kester M, Claxton DF, Barth BM, Deering TG, Cabot MC. J Lipid Res. 2016 Jul;57(7):1231-42. doi: 10.1194/jlr.M067389. Epub 2016 May 2.
-
Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells. Morad SA, Bridges LC, Almeida Larrea AD, Mayen AL, MacDougall MR, Davis TS, Kester M, Cabot MC. Cancer Lett. 2016 Jul 1;376(2):199-204. doi: 10.1016/j.canlet.2016.03.049. Epub 2016 Apr 1.
-
A novel biologically active acid stable liposomal formulation of docosahexaenoic acid in human breast cancer cell lines. Skibinski CG, Das A, Chen KM, Liao J, Manni A, Kester M, El-Bayoumy K. Chem Biol Interact. 2016 May 25;252:1-8. doi: 10.1016/j.cbi.2016.03.035. Epub 2016 Apr 1.
-
Dynamics of ceramide generation and metabolism in response to fenretinide - Diversity within and among leukemia. Morad SA, Davis TS, Kester M, Loughran TP Jr, Cabot MC. Leuk Res. 2015 Oct;39(10):1071-8. doi: 10.1016/j.leukres.2015.06.009. Epub 2015 Jul 2.
-
Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. Linton SS, Sherwood SG, Drews KC, Kester M. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Jul 7. doi: 10.1002/wnan.1358. [Epub ahead of print]
-
PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate. Adair Kester et al, 2013 ACS Nano 7(3):2132-44.
-
Calcium phosphosilicate nanoparticles for imaging and photodynamic therapy of cancer. Kester Adair et al, 2012 Discov Med. 13(71):275-85.
-
Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. Adair Kester et al, 2012 Wiley Interdiscip Rev Nanomed Nanobiotechnol. 4(1):96-112
-
Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. Adair, Kester et al, 2011 ACS Nano 5(7):5325-37
-
The colloidal stability of fluorescent calcium phosphosilicate nanoparticles: the effects of evaporation and redispersion on particle size distribution. Adair et al, 2011 Nanoscale 10.1039/c0nr00995d. Epub 2011 Apr 20
-
Nanoparticulate alternatives for drug delivery. Adair et al, 2010. ACS Nano. 4(9):4967-4970
-
Near infrared imaging with nanoparticles. Altinoglu et al, 2010. Wiley Interdisciplinary Reviews - Nanomedicine and Nanobiotechnology 2(5):461-477
-
Measuring the fluorescent quantum efficiency of indocynanine green encapsulated in nanocomposite particulates. Russin et al, 2010. Journal of Physics-Condensed Matter 22(33):334217
-
Bioconjugation of Calcium Phosphosilicate Composite Nanoparticles for Selective Targeting of Human Breast and Pancreatic Cancers In Vivo. Barth et al, 2010. ACS Nano 4(3):1279-87
-
Calcium Phosphate Nanocomposite Particles: A Safer and More Effective Alternative to Conventional Chemotherapy? Altinoglu et al, 2009. Future Oncology 5(3):279-281
-
Photophysics of Cy3-encapsulated Calcium Phosphate Nanoparticles. Muddana et al, 2009. Nano Letters 9(4):1559-1566
-
Shedding Light on tumors Using Nanoparticles. Rao. 2008. ACS Nano. 2:1984-1986
-
Near-Infrared Nanoparticles Shine a Bright Light on Cancer. National Cancer Institute’s Alliance for Nanotechnology in Cancer -October 2008 Nanotech News
-
Composite Nanoparticles Take Aim at Cancer. Gil et al, 2008. ACS Nano. 2(11):2200-2205
-
Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for In Vivo Imaging of Human Breast Cancer. Altinoglu et al, 2008. ACS Nano. 2(10):2075-2084
-
Calcium Phosphate Nanocomposite Particles for In Vitro Imaging and Encapsulated Chemotherapeutic Drug Delivery to Cancer Cells. Kester et al, 2008. Nano Letters 8(12):4116-4121
-
Encapsulation of Organic Molecules in Calcium Phosphate Nanocomposite Particles for Intracellular Imaging and Drug Delivery. Morgan et al, 2008. Nano Letters 8(12):4108-4115
Peer-reviewed publications surrounding Ceramide NanoLiposome Technology
-
Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic. Kester et al, 2015 Bio Chem. 10.1515/hsz-2015-0129
-
C6-ceramide nanoliposomes target the Warburg effect in chronic lymphocytic leukemia. Kester et al, 2013 PLoS One. 10.1371/journal.pone.0084648
-
Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models. Kester et al, 2013 Cancer Lett. 2013.04.034. Epub 2013 May 7
-
Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer.Yiang et al, 2011. 12(7)
-
Ceramide-Based Therapeutics for the Treatment of Cancer. Barth et al, 2011. Cancer Biol Ther. 12(5)
-
Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Tagaram et al, 2011. Gut 60(5):695-701
-
Targeting of surviving by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Liu et al, 2011. Blood 116(20):4192-4201
-
Metabolism of short-chain ceramide by human cancer cells – implications for therapeutic approaches. Chapman et al, 2010. Biochem Pharmacol 80(3):308-15
-
Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Tran et al, 2008. Clin Cancer Res 14(11):3571-81
-
Rapid distribution of liposomal short-chain ceramide in vitro and in vivo. Zolnik et al, 2008. Drug Metab Dispos 36(8):1709-15
-
Ceramide recruits and activates protein kinase C zeta within structured membrane microdomains. Fox et al, 2007. J Biol Chem 282(17):12450-7
-
The clinical potential of sphingolipid-based therapeutics. Fox et al, 2006. Cell Mol Life Sci 63(9):1017-23
-
Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Stover et al, 2005. Clin Cancer Res 11(9):3465-74
-
Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. Stover et al, 2003. J Pharmacol Exp Ther 307(2):468-75
-
Sphingolipids as therapeutics. Kester et al, 2003. Pharmacol Res 47(5):365-71
-
Ceramide-induced inhibition of Akt is mediated through protein kinase C zeta: implications for growth arrest. Bourbon et al, 2002. J Biol Chem 277(5):3286-92
-
Inhibitory actions of ceramide upon PKC-epsilon/ERK interactions. Bourbon et al, 2001. Am J Physiol Cell Physiol 280(6):C1403-11
-
Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. Bourbon et al, 2000. J Biol Chem 275(45):35617-23
-
Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades. Coroneos et al, 1996. Biochem J 316 (pt1):13-17